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ABSTRACT 

 

 This paper is an investigation of the number of regions created by the chords in a circle. 

Chords are drawn in circles with 1-5 points to find the number of regions for each circle. The 

relationship between the number of points and the number of regions in circles with 1-5 points is 

shown in a table, and a formula is created based off the powers of 2. The formula is rejected when 

the number of regions in a circle with six points does not equal the value from the formula. Using 

the calculator, a quartic regression is found, and is later tested to be successful with circles that 

have 1-8 points. Combinations, quadrilaterals, Platonic Solids and Euler’s Formula are introduced, 

and used to determine the number of regions. A pattern between Pascal’s Triangle and the number 

of regions is found. Two attempts are made to explain the relationship, but they are unsuccessful. 

In the addendum, a third, yet successful, attempt is made to prove the relationship algebraically. 
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PROBLEM STATEMENT 

 

We will be exploring problems that involve the number of points on a circle and the regions in a 

circle. By altering the number of points that are drawn on the circle, we can also change the number 

of regions that are created from chords that connect the points of the circle. 

Let’s take a look at this circle. 

 

 

 

 

 

 

Fig. 1. Showing a point on a circle. 

This circle has one point labeled, which means that this circle will only have one region inside of 

it. But what if there are two points drawn? This is shown in Figure 2. 

 

 

 

 

 

 

Fig. 2. A chord, 𝐴𝐵̅̅ ̅̅ , has been formed in the circle. 
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As shown in the picture, there are two regions in a circle when there are two points drawn. What 

if we have three points? This can be seen in Figure 3. 

 

 

 

 

 

 

Fig. 3. Two other chords, 𝐴𝐶̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅ , are labeled, and there are four regions in the circle. 

From these pictures, there are some questions that can be formed: 

• How does the number of points drawn in the circle affect the number of regions in the 

circle? 

• Is there a pattern between the number of points and the number of regions? 

 

RELATED RESEARCH 

 

Before, we have seen circles with one through three points drawn. But now, we will look at circles 

with more than three points. Take a look at Figure 4. 

 

 

 

 

 

Fig. 4. These circles have four and five points labeled, and more chords are formed. 
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In both of these pictures, we can see that the chords are intersecting, but three chords should not 

intersect at one common point. 

Is there a relationship between the number of points and the number of regions in a circle? Let’s 

make a chart and see what happens to the number of regions as the number of points increase. The 

results are shown in Table 1. 

Table 1. The Number of Regions in a Circle as the Number of Points Increase 

Number of Points Number of Regions 

1 1 

2 2 

3 4 

4 8 

5 16 

... ... 

𝑛 ? 

 

In the chart, we can discover that the number of regions in the circle increases exponentially. The 

number of regions are powers of two since 

20 = 1, 21 = 2, 22 = 4, 23 = 8 𝑎𝑛𝑑 24 = 16. 

However, if we look closer, we can see that the exponents in the powers of two are one less than 

the number of points. Therefore, the formula to get the number of regions can be represented as 

2𝑛−1 

Now that we know this pattern, we can use this to predict the number of regions in circles with 

more than five points. Let’s try a circle with six points! 

Substitute six in for the number of points. 

26−1 

Simplify. 

25 = 32 
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From this, we are going to predict that the number of regions in a circle with six points is 32. Let’s 

see if our prediction is correct! Take a look at Figure 5. 

 

Fig. 5. The circle with six points has 31 regions. 

As we can see, our prediction is not correct since a circle with six points has 31 regions! This 

shows how the pattern we found before is not true for circles with more than five points. We are 

  16 
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now going to try and find another formula that will work for this case. We can plot the number of 

points and regions for circles with 1-6 points in the calculator. To get a table of values, we can 

press STAT from the home screen, and click on Edit, which is shown in Figure 6. 

 

 

 

 

Fig. 6. Getting a table of values using the calculator. 

We can fill in the table of values, and after that we can press STAT, move to CALC and scroll 

down to “QuartReg” since we are attempting to find the equation of the quartic regression curve. 

After pressing “QuartReg”, we can type in the columns that are used in the table, which are 𝐿1 and 

𝐿2. This is shown in Figure 7. 

Fig. 7. Filling in the table of values and calculating the quartic regression. 

Finally, we can press ENTER, and the values of each variable in the equation of the quartic 

regression curve are shown in Figure 8. 
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Fig. 8. For the quartic regression, 𝑅2 is equal to one. 

Since 𝑅2 = 1, we can use this equation. After turning the decimals into fractions, we can see that 

the formula for the number of regions, 𝑅, is equal to 

𝑅 =
1

24
𝑛4 −

1

4
𝑛3 +

23

24
𝑛2 −

3

4
𝑛 + 1 

Let’s see what happens when we have circles with seven and eight points. This is shown in Figure 

9 and Figure 10. 
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Fig. 9. The circle with seven points has 57 regions.  

 

 

 

21 

22 

25 

26 

27 
51 
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Fig. 10. The number of regions in a circle with eight points is 99.   

In Figures 9 and 10, we can see that there are 57 regions in a circle with seven points, and 99 

regions in a circle with eight points. Will these numbers be the same when using the formula? 

Let’s make another table that shows the number of regions for these circles from the formula. 

 

 

50 

45 

23 

46 

47 

31 

29 
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Table 2. The Number of Regions Using 𝑅 =
1

24
𝑛4 −

1

4
𝑛3 +

23

24
𝑛2 −

3

4
𝑛 + 1 

Number of Points 

on Circle 

Number of 

Predicted Regions 

Using 2𝑛−1 

Number of Regions 

Using 𝑅 

Actual Number of 

Regions  

in Circle 

1 1 1 1 

2 2 2 2 

3 4 4 4 

4 8 8 8 

5 16 16 16 

6 32 31 31 

7 64 57 57 

8 128 99 99 

 

From this table, we can see how these values are correct, which means that this formula works for 

circles with up to eight points. 

We will now learn about combinations in the next section, which will help us continue to predict 

the number of regions in a circle as the number of points goes beyond eight points. 

 

Combinations 

 

In the previous section, we have found a formula that helps determine the number of maximum 

regions in a circle with 1-8 points. But what if we needed to find the maximum regions in a circle 

with ten or more points? We are now going to explore combinations, which are the arrangements 

of objects that are not in a specific order. Let’s say we had a problem like this: 

 

How many groups of four letters can be taken from A, B, C, D, E and F? 

 

Now that we see this problem, we can list the number of groups of four that can be made without 

dealing with the order. 
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ABCD  ABDE  ACDE  ADEF  BCEF 

ABCE  ABDF  ACDF  BCDE  BDEF 

ABCF  ABEF  ACEF  BCDF  CDEF 

As we can see, there are 15 possible arrangements that are created from this problem. Let’s use 

our calculator and see if this is correct.  

We can type “6” into the calculator since there are six people in this problem, and then we can 

press MATH, and move to PRB, or probability. This is shown in Figure 11.  

 

 

 

 

 

 

Fig. 11. Calculating the number of possible arrangements in a combination with 6C4. 

After that, we can click on “nCr”, which tells the calculator that this is a combination, and then 

press “4” since we had to create groups of four. After pressing ENTER, we get our result in Figure 

12. 

 

 

 

 

 

 

Fig. 12. Showing the number of combinations on the calculator.  

 

We can see that this is correct for this problem! 

Now, instead of listing the number of combinations and counting them or using a calculator, there 

is a formula that we can use to obtain this. The formula is 
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𝑛𝐶𝑟 =
𝑛!

(𝑛 − 𝑟)! 𝑟!
 

In this formula, the variable 𝑛 represents the number of objects that are being used, and the variable 

𝑟 represents the number of objects in each group. We can take the problem from above and use 

this formula to get the number of possible arrangements. 

Substitute 6 in for 𝑛 and 4 in for 𝑟. 

6𝐶4 =
6!

(6 − 4)! 4!
 

Simplify. 

6𝐶4 =
6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

2 ∗ 1 ∗ 4 ∗ 3 ∗ 2 ∗ 1
 

Since 6 is divisible by 3, the 2 in the denominator can cancel out, and the 6 on the numerator can 

be replaced with 3. 

6𝐶4 =
3 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

1 ∗ 4 ∗ 3 ∗ 2 ∗ 1
 

Cancel out the 4, 3, 2 and 1 on the numerator and denominator. 

6𝐶4 =
3 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

1 ∗ 4 ∗ 3 ∗ 2 ∗ 1
=

3 ∗ 5

1
 

Simplify. 

6𝐶4 = 15 

As a result, there are 15 different ways to make groups of four from six letters. 

Since we understand what the number of combinations is in 6C4, we will take a look at how this 

combination will be applied to counting the number of vertices. Let’s define some terms that will 

be used throughout this section. A region is an area inside a two-dimensional figure, as we have 

been determining the number of maximum regions in a circle. A vertex is a point that is formed 

from the intersection of two segments, and an edge is a side of a two or three-dimensional polygon.  
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The combination, 6C4, will help us count the number of interior vertices in a circle specifically 

with six points. Four of the six points will need to be used, making a quadrilateral. In the 

quadrilateral, the diagonals must intersect in order for an interior vertex to be created. In total, 

there would be 15 quadrilaterals inside of the hexagon, which we already know since we are using 

the combination 6C4. Three of these quadrilaterals are shown in Figure 13. 

 

Fig. 13. The interior vertices of these quadrilaterals are represented as 𝐼1, 𝐼2 and 𝐼3. 

Each quadrilateral in the hexagon creates an interior vertex from the diagonals that intersect, and 

because there are 15 different quadrilaterals, there will also be 15 interior vertices. 

Now that we understand how the combination 6C4 is used in a circle with six points, we will need 

to know about Platonic Solids, which consist of the tetrahedron, cube, octahedron, dodecahedron 

and icosahedron.  

 

 

 

 

𝐼1 

𝐼2 

 𝐼3 
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Finding the Total Number of Regions 

 

Platonic Solids and Euler’s Formula 

 

Platonic Solids are polyhedra, or three-dimensional figures, that have straight edges, vertices and 

faces, which are congruent, regular polygons. The types of Platonic Solids are shown in Figure 14. 

 

 

Fig. 14. There are only five known Platonic Solids that exist. 

We are going to look at the number of edges, vertices and faces of each Platonic Solid, and then 

determine if there is a relationship between all of them. In Table 3 below, faces, edges and vertices 

are abbreviated as 𝐹, 𝐸 and 𝑉. 

Table 3. The Faces, Edges and Vertices on the Platonic Solids  

Name of Solid 𝐹 𝐸 𝑉 

Tetrahedron 4 6 4 

Cube 6 12 8 

Octahedron 8 12 6 

Dodecahedron 12 30 20 

Icosahedron 20 30 12 

 

From looking at Table 3, we can see that if we take the number of faces, subtract the number of 

edges from the number of faces and add the number of vertices to that difference, the answer will 

be 2 for all of the Platonic Solids. This is known as Euler’s formula, and it can be displayed as 

𝐹 − 𝐸 + 𝑉 = 2. 
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Euler’s formula works with three-dimensional figures. However, we need to figure out how to 

make this formula work for two-dimensional figures since we are dealing with the number of 

regions in a circle. We are going to use a cube in this attempt and ultimately try to come up with 

an equation for two-dimensional figures. Let’s start by forming the cube from a piece of paper, 

which is shown in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Creating a 3x3 cube by folding the net of the cube and taping its edges. 

We can “smash” this paper cube in order to make it a two-dimensional figure, and the flattened 

cube is shown in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Flattening the paper cube, but with the edges intact. 
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One of the faces, the bottom face, can be removed from inside of the cube because we have made 

this cube into a two-dimensional figure. But now, there are five faces rather than six, which means 

Euler’s formula will no longer hold. We can see this in Figure 17. 

 

 

 

 

 

 

 

Fig. 17. The number of faces in this figure is five, unlike a cube that has six faces. 

Now what happens to the removed face? This is shown in Figure 18. 

 

 

 

 

 

 

 

Fig. 18. The bottom face that has been removed becomes an exterior region. 

The bottom face has been flattened enough to become a plane with an infinite length and width 

and no height. It is also no longer inside of the figure, which means the removed face turns into an 

unbounded exterior region, or a region that is not surrounded by any boundaries or edges. 

6 

1 

2 

3 

 4 

 5 

1 

2 

3 

 4 

 5 
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However, we are only dealing with the interior regions of a two-dimensional figure, as shown in 

Figure 19. 

 

 

 

 

 

 

Fig. 19. Only the interior regions of a circle with three points are labeled. 

Since we are exploring the interior regions of a circle and not the exterior regions, the unbounded 

exterior region can be ignored. This decreases our total in the new formula to 1 since the exterior 

region is not being included, making us still have five faces in the figure instead of six. As a result, 

the new equation can be shown as 

𝑅 − 𝐸 + 𝑉 = 1. 

We still have the variables E and V that represent the number of edges and vertices, but now we 

have the variable R instead of F, which shows the number of interior regions in a two-dimensional 

figure. 

Now why did we not use the net of the paper cube? Let’s take a look at Figure 20. 
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Fig. 20. Showing the net of the 3x3 cube. 

Looking back at Table 3, there are 12 edges and 8 vertices on a cube. On the net of the cube, the 

number of faces is still six and the number of vertices is also eight, but the number of edges 

changes. Some edges that are connected together in the cube are separated in the net; while others 

do not change at all. These different edges are labeled in Figure 21. 

 

 

 

 

 

 

 

Fig. 21. The red edges remain the same; while the green edges connect when forming a cube. 

The net in Figure 21 has 19 edges, which shows how there are seven “extra” edges on a net that 

connect when forming a cube. Using the net would provide us with the wrong equation. If we were 

to take the number of faces on the net, subtract it by the number of edges on the net and add the 
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number of vertices on the net, the total would not equal 1 because the “extra” edges would end up 

being double-counted. Therefore, the net of the cube could not be used because the extra edges 

would affect the total that would be obtained. By creating the cube and smashing it, we are able to 

keep the same number of edges in the cube since it is not being altered. 

We will now go back to finding the total number of vertices in a circle with six points. Before, we 

found the number of interior vertices, which was represented as the combination 6C4. An interior 

vertex is shown in Figure 22. 

 

 

 

 

 

 

 

 

Fig. 22. One of the 15 interior vertices is made from the diagonals of a quadrilateral. 

However, we also need the exterior vertices of the hexagon. The number of exterior vertices is 

equal to the number of points on the circle, meaning there would be six exterior vertices in this 

case. Since we have the number of exterior and interior vertices, we can add them together to get 

the total number of vertices, which is equal to 21. All of this can be substituted into the new formula 

we created. 

𝑅 + (6𝐶4 + 6) − 𝐸 = 1 

 

𝐼1 
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Simplify 6C4. 

𝑅 + (15 + 6) − 𝐸 = 1 

 

Add 15 and 6 in the parentheses. 

𝑅 + 21 − 𝐸 = 1 

If we had an unknown number of points on a circle that is represented as 𝑛, the total number of 

vertices would be equal to 𝑛𝐶4 + 𝑛, which can be shown as 

𝑉 = 𝑛𝐶4 + 𝑛 

The variable 𝑛 is equal to the number of exterior vertices since it is the number of points on the 

circle, and the combination 𝑛𝐶4 shows the number of interior vertices. The interior vertices would 

still be formed from the intersection of the diagonals in quadrilaterals, and the quadrilaterals use 

four of the 𝑛 number of points. Substituting this value into the formula would change the equation 

to 

𝑅 + (𝑛 + 𝑛𝐶4) − 𝐸 = 1 

Now that we understand the number of vertices for a circle with six points and a circle with 𝑛 

points, we can move onto finding the number of edges for those circles.  

 

Edges 

 

For the circle with six points, there are six exterior edges since a hexagon is formed from the six 

exterior vertices. In addition to this, each of the vertices is an endpoint for five edges. This can be 

shown in Figure 23. 
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Fig. 23. Exterior vertex F connects five different edges. 

 

From the information given, we can represent this as the product of six and five, and this is the 

first part of the total number of edges. The second part deals with the number of interior edges, 

which uses the interior vertices. As we have discovered before, there are a total of 15 interior 

vertices, which is shown as the combination 6C4. Each interior vertex is created by the intersection 

of four edges that are from the diagonals of the quadrilateral. The four edges that an interior vertex 

connects to are shown in Figure 24.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. Interior vertices 𝐾 and 𝐿 are endpoints of four edges. 

  𝐿 

 𝐾 K 

L 
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Therefore, this part of our equation can be represented as the product of 6C4 and 4. Since we have 

the number of interior edges and the number of exterior edges, we can show this as 

(6)(5) + (6𝐶4)(4) 

Although we have the “total number of edges”, this expression still needs a third part added to it. 

In this case, all of the edges of the circle are double-counted. If we took the exterior edge 𝐹𝐴̅̅ ̅̅ , for 

example, it could also act as the exterior edge 𝐴𝐹̅̅ ̅̅ . There are two different names, but they still use 

the same edge. Since every edge is double-counted, we would have to divide the sum of the interior 

and exterior edges by two. As a result, the total number of edges in a circle with six points can be 

displayed as 

𝐸 =
(6)(5) + (6𝐶4)(4)

2
 

We can also find the number of edges for a circle with an n number of points. There are n points 

on the circle, and the number of edges that one of those points would connect to would be 

represented as 𝑛 − 1. As we saw in the circle with six points, an exterior vertex was the endpoint 

of five edges, and five is one less than six. Thus, the number of exterior edges would be equal to 

the product of n and 𝑛 − 1, or 

𝑛(𝑛 − 1) 

We have previously found the number of interior vertices when we were calculating the total 

number of vertices, which was equal to 𝑛𝐶4. In Figure 24, we showed how an interior vertex is 

the endpoint for four edges since those four edges of one of the quadrilaterals make up the interior 

vertex. From this, the number of interior edges would be equal to the product of 𝑛𝐶4 and 4.  

The sum of the interior and exterior edges would have to be divided by 2 because all of the edges 

are double-counted, as we explained in the problem for a circle with six points. The total number 

of edges for a circle with 𝑛 points would then have to be equal to 
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𝐸 =
𝑛(𝑛 − 1) + (𝑛𝐶4)(4)

2
 

Since we have the number of vertices and edges for the circle with six points and the circle with n 

points, we will now plug these values into the formula to solve for the total number of regions for 

each circle. 

 

Using the 𝑅 Formula 

 

We are going to determine the total number of regions for the circle with six points. The formula 

we left off with on Page 19 only had the total number of vertices, and was represented as 

𝑅 + 21 − 𝐸 = 1 

But now, we can replace 𝐸 with 
(6)(5)+(6𝐶4)(4)

2
 and solve for the interior regions using this formula. 

Substitute 
(6)(5)+(6𝐶4)(4)

2
 in for 𝐸. 

𝑅 + 21 −
(6)(5) + (6𝐶4)(4)

2
= 1 

Simplify the numerator of the fraction. 

𝑅 + 21 −
90

2
= 1 

Divide 90 by 2. 

𝑅 + 21 − 45 = 1 

Simplify. 

𝑅 − 24 = 1 

Add 24 to both sides of the equation 

𝑅 = 25 
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We can see that the number of interior regions in a circle with six points is equal to 25. In order to 

get the total number of regions, however, we have to add the number of exterior regions, or the 

regions that are located outside of the hexagon. Since there are six exterior regions, we can add 

this to 25 to get 31 as the total number of regions. 

We are now going to find the total number of regions for the circle with 𝑛 points using the same 

method. The formula we had on Page 19 was shown as 

𝑅 + (𝑛 + 𝑛𝐶4) − 𝐸 = 1 

We can substitute in the number of edges, 
𝑛(𝑛−1)+(𝑛𝐶4)(4)

2
, in this equation to get 

𝑅 + 𝑛 + 𝑛𝐶4 −
𝑛(𝑛 − 1) + (𝑛𝐶4)(4)

2
= 1 

Simplify 
(𝑛𝐶4)(4)

2
 since 4 is divisible by 2. 

𝑅 + 𝑛 + 𝑛𝐶4 − (
𝑛(𝑛 − 1)

2
+ 2(𝑛𝐶4)) = 1 

Distribute the negative to the terms in the parentheses. 

𝑅 + 𝑛 + 𝑛𝐶4 −
𝑛(𝑛 − 1)

2
− 2(𝑛𝐶4) = 1 

Combine 𝑛𝐶4 and −2(𝑛𝐶4) since they are like terms. 

𝑅 −
𝑛(𝑛 − 1)

2
− 𝑛𝐶4 + 𝑛 = 1 

Subtract 𝑛 from both sides. 

𝑅 −
𝑛(𝑛 − 1)

2
− 𝑛𝐶4 = 1 − 𝑛 

Add 
𝑛(𝑛−1)

2
 and 𝑛𝐶4 to both sides to isolate 𝑅. 

𝑅 =
𝑛(𝑛 − 1)

2
+ 𝑛𝐶4 − 𝑛 + 1 
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From this, the number of interior regions in a circle with 𝑛 points is equal to  

𝑅 =
𝑛(𝑛−1)

2
+ 𝑛𝐶4 − 𝑛 + 1. 

We can add the number of segments to this expression to get the total number of regions. A 

segment is the area that lies between a chord and a portion of the circle. In this case, there would 

be 𝑛 segments because there are 𝑛 points on the circle. 

Add 𝑛 to 
𝑛(𝑛−1)

2
+ 𝑛𝐶4 − 𝑛 + 1. 

𝑅 =
𝑛(𝑛 − 1)

2
+ 𝑛𝐶4 − 𝑛 + 1 + 𝑛 

Eliminate 𝑛 and – 𝑛. 

𝑅 =
𝑛(𝑛−1)

2
+ 𝑛𝐶4 + 1              (Equation 1) 

Equation 1 above shows the total number of regions, but we can simplify this even further to find 

another way to represent the total number of regions. 

Using the formula, 𝑛𝐶𝑟 =
𝑛!

(𝑛−𝑟)!𝑟!
, rewrite 𝑛𝐶4 as 

𝑛!

(𝑛−4)!4!
. 

𝑅 =
𝑛(𝑛 − 1)

2
+

𝑛!

(𝑛 − 4)! 4!
+ 1 

Now, when we have a factorial, we multiply the original number by numbers that are one less than 

the previous number until we reach one. For instance, 4! is equal to 4 ∗ 3 ∗ 2 ∗ 1, which is 

simplified to 24. However, with a variable, it can go on infinitely, so for 𝑛!, it would be 

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4) … 

For this case, limit 𝑛! to 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)! and substitute it into the expression. 

𝑅 =
𝑛(𝑛 − 1)

2
+

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)!

(𝑛 − 4)! 4!
+ 1 
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Cancel out (𝑛 − 4)! on the numerator and denominator. 

𝑅 =
𝑛(𝑛 − 1)

2
+

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4!
+ 1 

Simplify 4!. 

𝑅 =
𝑛(𝑛 − 1)

2
+

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4 ∗ 3 ∗ 2 ∗ 1
+ 1 

Simplify the denominator. 

𝑅 =
𝑛(𝑛 − 1)

2
+

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

24
+ 1 

Distribute 𝑛 to (𝑛 − 1) on both of the numerators. 

𝑅 =
𝑛2 − 𝑛

2
+

(𝑛2 − 𝑛)(𝑛 − 2)(𝑛 − 3)

24
+ 1 

Multiply (𝑛2 − 𝑛) by (𝑛 − 2). 

𝑅 =
𝑛2 − 𝑛

2
+

(𝑛3 − 2𝑛2 − 𝑛2 + 2𝑛)(𝑛 − 3)

24
+ 1 

Simplify. 

𝑅 =
𝑛2 − 𝑛

2
+

(𝑛3 − 3𝑛2 + 2𝑛)(𝑛 − 3)

24
+ 1 

Multiply (𝑛3 − 3𝑛2 + 2𝑛) by (𝑛 − 3). 

𝑅 =
𝑛2 − 𝑛

2
+

𝑛4 − 3𝑛3 − 3𝑛3 + 9𝑛2 + 2𝑛2 − 6𝑛

24
+ 1 

Simplify. 

𝑅 =
𝑛2 − 𝑛

2
+

𝑛4 − 6𝑛3 + 11𝑛2 − 6𝑛

24
+ 1 

Multiply 
𝑛2−1

2
 by 

12

12
 to make a common denominator. 

𝑅 =
12𝑛2 − 12𝑛

24
+

𝑛4 − 6𝑛3 + 11𝑛2 − 6𝑛

24
+ 1 
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Simplify. 

𝑅 =
𝑛4 − 6𝑛3 + 23𝑛2 − 18𝑛

24
+ 1 

Factor out 
1

24
. 

𝑅 =
1

24
(𝑛4 − 6𝑛3 + 23𝑛2 − 18𝑛 + 24) 

Distribute 
1

24
 to all of the terms in the parentheses. 

𝑅 =
1

24
𝑛4 −

6

24
𝑛3 +

23

24
𝑛2 −

18

24
𝑛 +

24

24
 

Simplify. 

𝑅 =
1

24
𝑛4 −

1

4
𝑛3 +

23

24
𝑛2 −

3

4
𝑛 + 1 

Therefore, the total number of regions for a circle with 𝑛 points is also equal to  

𝑅 =
1

24
𝑛4 −

1

4
𝑛3 +

23

24
𝑛2 −

3

4
𝑛 + 1. 

This is the same expression we got when we obtained the quartic regression on Page 6. Since they 

are equal to each other, we can find the total number of regions for any circle using this expression. 

Let’s go back to Equation 1 on Page 24. 

𝑅 =
𝑛(𝑛 − 1)

2
+ 𝑛𝐶4 + 1 

We can express Equation 1 using combinations. The combination nC4 is already in Equation 1, 

and 1 can be shown as the combination nC0 because 0! = 1. Using the formula, 𝑛𝐶𝑟 =
𝑛!

(𝑛−𝑟)!𝑟!
, 

we can see that 

𝑛𝐶0 =
𝑛!

(𝑛 − 0)! 0!
=

𝑛!

𝑛! 0!
=

1

0!
= 1. 
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But how do we express 
𝑛(𝑛−1)

2
 as a combination nCr? We are going to see what nC2 is equal to 

using the formula, 𝑛𝐶𝑟 =
𝑛!

(𝑛−𝑟)!𝑟!
. 

Substitute 2 for 𝑟 into the formula, 𝑛𝐶𝑟 =
𝑛!

(𝑛−𝑟)!𝑟!
. 

𝑛𝐶2 =
𝑛!

(𝑛 − 2)! 2!
 

Rewrite 𝑛! as 𝑛(𝑛 − 1)(𝑛 − 2)!. 

𝑛𝐶2 =
𝑛(𝑛 − 1)(𝑛 − 2)!

(𝑛 − 2)! 2!
 

Eliminate (𝑛 − 2)! on the numerator and denominator. 

𝑛𝐶2 =
𝑛(𝑛 − 1)

2!
 

Simplify 2!. 

𝑛𝐶2 =
𝑛(𝑛 − 1)

2
 

Since 𝑛𝐶2 =
𝑛(𝑛−1)

2
, it can replace the 

𝑛(𝑛−1)

2
 in Equation 1. As a result, the new equation is 

𝑅 = 𝑛𝐶4 + 𝑛𝐶2 + 𝑛𝐶0   (Equation 2) 

Now that we have Equation 2, we can see if it works when finding the number of regions in circles 

with a certain number of points. This is shown in Table 4. 

Table 4. Using the 𝑛𝐶4 + 𝑛𝐶2 + 𝑛𝐶0 Formula 

𝑛 𝑅 1

24
𝑛4 −

1

4
𝑛3 +

23

24
𝑛2 −

3

4
𝑛 + 1 

𝑛𝐶4 + 𝑛𝐶2 + 𝑛𝐶0 

4 8 8 8 

5 16 16 16 

6 31 31 31 

7 57 57 57 

8 99 99 99 
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In Table 4, 𝑛 represents the number of points on the circle, 𝑅 shows the number of regions on the 

circle and the values from using the quartic regression and Equation 2 are shown in the last two 

columns. As we can see, the values from using Equation 2 are equal to the number of regions for 

each of those circles and the values from the quartic regression, so Equation 2 can be used as an 

alternative to the quartic regression. The second equation is easier to use than the regression, and 

it is also easier to plug into the calculator. 

In the next section, we will look at a pattern in Pascal’s Triangle that is applied to the number of 

regions in a circle with a certain number of points. 

 

 

Using Pascal’s Triangle 

 

 

Before, we discovered a new formula to calculate the number of regions in a circle rather than 

using the quartic regression. We are now going observe a pattern in Pascal’s Triangle relating to 

the number of regions. The following pattern is shown in Table 5. 

Table 5. The Number of Regions and the Sum of the First Five Terms of Pascal’s Triangle 

𝑛 𝑅 Powers of 2 Rows of Pascal’s 

Triangle 

Sum of 

Rows of 

Pascal’s 

Triangle 

Sum of First 

Five Terms of 

Each Row of 

Pascal’s 

Triangle 

1 1 1 1 1 1 

2 2 2 1 1 2 2 

3 4 4 1 2 1 4 4 

4 8 8 1 3 3 1 8 8 

5 16 16 1 4 6 4 1 16 16 

6 31 32 1 5 10 10 5 1 32 31 

7 57 64 1 6 15 20 15 6 1 64 57 

8 99 128 1 7 21 35 35 21 7 1 128 99 
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From Table 5, we can see how the sum of the rows of Pascal’s Triangle are equal to the powers of 

two, and the sum of the first five terms of each row of Pascal’s Triangle are the same as the number 

of regions, 𝑅, for each number of points on the circle. All of the terms are also used until the sixth 

row and beyond, where only five of the terms are then used. 

Will this pattern continue beyond eight points? Look at Table 6. 

Table 6. The Sum of the First Five Terms of Pascal’s Triangle in a Circle with 9-12 Points 

𝑛 𝑅 Powers 

of 2 

Rows of Pascal’s Triangle Sum of First 

Five Terms  

of Each  

Row of 

Pascal’s 

Triangle 

Difference 

Between 

Powers of 

2 and 𝑅 

9 163 256 1 8 28 56 70 56 28 8 1 163 93 

10 256 512 1 9 36 84 126 126 84 36 9 1 256 256 

11 386 1,024 1 10 45 120 210 252 210 120 45 10 1 386 638 

12 562 2,048 1 11 55 165 330 462 462 330 165 55 11 1 562 1,486 

 

As we can see, the pattern proves to exist for circles with 9-12 points. In addition to this, Table 6 

shows the difference between the powers of two and the number of regions. What if we take the 

difference between the powers of two and 𝑅, and calculate the quotients of two consecutive 

numbers in the difference? This is shown in Table 7. 

Table 7. Quotients for Every Two Consecutive Numbers in the Difference 

𝑛 𝑅 Powers 

of 2 

Difference 

Between 

Powers of 

2 and 𝑅 

Quotients 

6 31 32 1  

7 57 64 7 

8 99 128 29 

9 163 256 93 

10 256 512 256 

11 386 1,024 638 

12 562 2,048 1,486 

 

7.00 

4.14 

3.21 

2.75 

2.49 

2.33 
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Since the quotients of two consecutive numbers are relatively consistent, we can predict that this 

will have an exponential regression. Let’s see if our prediction is correct using the calculator. The 

result is shown in Figure 26. 

 

 

 

 

Fig. 26. For the exponential regression, the value of 𝑟 is very close to 1. 

Therefore, when calculating the regression between the number of points on the circle and the 

difference between the powers of two and 𝑅, we can see that is will most-likely have an exponential 

regression. However, since 𝑟 is not equal to one, this regression cannot be used. 

 

Pascal’s Triangle and Combinations 

 

We are still searching to explain the relationship between the combination formula for 𝑅 and the 

first five numbers in Pascal’s Triangle. We are going to attempt to use combinations since the 

formula we discovered for 𝑅 on Page 28 was expressed using combinations. Recall the 

combination formula for 𝑅 is 

𝑅 = 𝑛𝐶4 + 𝑛𝐶2 + 𝑛𝐶0. 

We can write the rows of Pascal’s Triangle as combinations. This is shown in Figure 27. 
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Fig. 27. Comparing the original rows of Pascal’s Triangle to the rows with combinations. 

In Figure 27, the rows of combinations are equal to the original rows of Pascal’s Triangle, which 

explains why we are able to do this. In addition, looking at the table, the number of points is equal 

to the row of Pascal’s Triangle being used. We are going to see if we can understand the connection 

between Pascal’s Triangle and the number of regions by adding the first five combinations in the 

fifth and sixth rows of Pascal’s Triangle and comparing it to the value from using the combination 

formula for 𝑅. Let’s try it using a circle with six points! 

A circle with six points uses the first five terms of the sixth row of Pascal’s Triangle. We can 

rewrite the first five combinations in the sixth row using 
𝑛!

(𝑛−𝑟)!𝑟!
 to get 

5!

5! (5 − 5)!
+

5!

4! (5 − 4)!
+

5!

3! (5 − 3)!
+

5!

2! (5 − 2)!
+

5!

1! (5 − 1)!
. 

Simplify the denominators. 

5!

5! (0!)
+

5!

4! (1!)
+

5!

3! (2!)
+

5!

2! (3!)
+

5!

1! (4!)
 

   ൫0
0
൯     1 

  ൫1
0
൯൫1

1
൯    1 1 

൫2
0
൯൫2

1
൯൫2

2
൯       1 2 1 

൫3
0
൯൫3

1
൯൫3

2
൯൫3

3
൯       1 3 3 1 

൫4
0
൯൫4

1
൯൫4

2
൯൫4

3
൯൫4

4
൯      1 4 6 4 1 

൫5
0
൯൫5

1
൯൫5

2
൯൫5

3
൯൫5

4
൯൫5

5
൯      1 5 10 10 5 1 

൫6
0
൯൫6

1
൯൫6

2
൯൫6

3
൯൫6

4
൯൫6

5
൯൫6

6
൯     1 6 15 20 15 6 1 

൫7
0
൯൫7

1
൯൫7

2
൯൫7

3
൯൫7

4
൯൫7

5
൯൫7

6
൯൫7

7
൯                1 7 21 35 35 21 7 1 

 

𝑛 𝑅 

1 1 

2 2 

3 4 

4 8 

5 16 

6 31 

7 57 

8 99 

 

Row 1 

Row 2 

Row 3 

Row 4 

Row 5 

Row 6 

Row 7 

Row 8 
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Simplify. 

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 ∗ 1
+

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

4 ∗ 3 ∗ 2 ∗ 1 ∗ 1
+

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

3 ∗ 2 ∗ 1 ∗ 2 ∗ 1
+

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

2 ∗ 1 ∗ 3 ∗ 2 ∗ 1
+

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

1 ∗ 4 ∗ 3 ∗ 2 ∗ 1
 

Cancel out the numbers in the numerators and denominators that are in common. 

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 ∗ 1
+

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

4 ∗ 3 ∗ 2 ∗ 1 ∗ 1
+

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

3 ∗ 2 ∗ 1 ∗ 2 ∗ 1
+

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

2 ∗ 1 ∗ 3 ∗ 2 ∗ 1
+

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

1 ∗ 4 ∗ 3 ∗ 2 ∗ 1
 

Simplify. 

1

1
+

5

1
+

5 ∗ 4

2 ∗ 1
+

5 ∗ 4

2 ∗ 1
+

5

1
= 1 + 5 + 10 + 10 + 5 = 31 

From adding the first five combinations in the sixth row, we get 31 regions, which is true for a 

circle with six points. Let’s see what happens when we use the combination formula for 𝑅.  

Substitute ൫6
4
൯, ൫6

2
൯ and ൫6

0
൯ into the combination formula for 𝑅 since 𝑛 = 6. 

𝑅 = (
6

4
) + (

6

2
) + (

6

0
) 

Rewrite the combinations using 
𝑛!

(𝑛−𝑟)!𝑟!
. 

𝑅 =
6!

4! (6 − 4)!
+

6!

2! (6 − 2)!
+

6!

0! (6 − 0)!
 

Simplify the denominators of each fraction. 

𝑅 =
6!

4! 2!
+

6!

2! 4!
+

6!

0! 6!
 

Simplify. 

𝑅 =
6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

4 ∗ 3 ∗ 2 ∗ 1 ∗ 2 ∗ 1
+

6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

2 ∗ 1 ∗ 4 ∗ 3 ∗ 2 ∗ 1
+

6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

1 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1
 

Cancel out the numbers in the numerator and denominator that are in common. 

𝑅 =
6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

4 ∗ 3 ∗ 2 ∗ 1 ∗ 2 ∗ 1
+

6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

2 ∗ 1 ∗ 4 ∗ 3 ∗ 2 ∗ 1
+

6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

1 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1
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Simplify. 

𝑅 =
6 ∗ 5

2 ∗ 1
+

6 ∗ 5

2 ∗ 1
+

1

1
= 15 + 15 + 1 = 31 

From this, we can see how the sum of the first five entries equals the value obtained from the 

combination formula for 𝑅. This can also be shown with a circle that has seven points. When 

adding the first five combinations in the seventh row of Pascal’s Triangle, we get 

6!

6! 0!
+

6!

5! 1!
+

6!

4! 2!
+

6!

3! 3!
+

6!

2! 4!
= 57. 

For the combination formula for 𝑅, after we substitute in ൫7
4
൯, ൫7

2
൯ and ൫7

0
൯ and simplify, we get 

𝑅 =
7!

4! 3!
+

7!

2! 5!
+

7!

0! 7!
= 57. 

Now why do the first five combinations of a row in Pascal’s Triangle equal the number from the 

combination formula for 𝑅? We need to prove this algebraically. 

 

Finding the Relationship Algebraically 

 

We left off attempting to find a correlation between the number of regions and the first five terms 

of each row of Pascal’s Triangle using regression and combinations. We are now going to see if 

we can algebraically find this relationship. The combination formula is 

𝑅 = (
𝑛

4
) + (

𝑛

2
) + (

𝑛

0
) 

The first five terms of Pascal’s Triangle, using combinations, can be expressed as 

𝑅 = (
𝑛 − 1

0
) + (

𝑛 − 1

1
) + (

𝑛 − 1

2
) + (

𝑛 − 1

3
) + (

𝑛 − 1

4
). 
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We can now set these two expressions equal to one another to get 

(
𝑛

4
) + (

𝑛

2
) + (

𝑛

0
)

?
=

(
𝑛 − 1

0
) + (

𝑛 − 1

1
) + (

𝑛 − 1

2
) + (

𝑛 − 1

3
) + (

𝑛 − 1

4
) 

Since ൫𝑛
0

൯ and ൫𝑛−1
0

൯ are equal to 1, we can eliminate them in the equation. This leaves us with 

(
𝑛

4
) + (

𝑛

2
) 

?
=

 (
𝑛 − 1

1
) + (

𝑛 − 1

2
) + (

𝑛 − 1

3
) + (

𝑛 − 1

4
) 

Express each combination using the formula, 𝑛𝐶𝑟 =
𝑛!

𝑟!(𝑛−𝑟)!
. 

𝑛!

4! (𝑛 − 4)!
+

𝑛!

2! (𝑛 − 2)!
 

?
=

 
(𝑛 − 1)!

1! (𝑛 − 2)!
+

(𝑛 − 1)!

2! (𝑛 − 3)!
+

(𝑛 − 1)!

3! (𝑛 − 4)!
+

(𝑛 − 1)!

4! (𝑛 − 5)!
 

Expand 𝑛! and (𝑛 − 1)! to eliminate the factorials in the denominators. 

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4!
+

𝑛(𝑛 − 1)

2!
 

?
=

 
(𝑛 − 1)

1!
+

(𝑛 − 1)(𝑛 − 2)

2!
+

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3!
+

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

4!
 

Multiply the right side of the equation by 𝑛 and 
1

𝑛
. 

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4!
+

𝑛(𝑛 − 1)

2!
 

?
=

 
1

𝑛
(𝑛 [

(𝑛 − 1)

1!
+

(𝑛 − 1)(𝑛 − 2)

2!
+

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3!
+

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

4!
]) 

Distribute 𝑛. 

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4!
+

𝑛(𝑛 − 1)

2!
 

?
=

 
1

𝑛
(

𝑛(𝑛 − 1)

1!
+

𝑛(𝑛 − 1)(𝑛 − 2)

2!
+

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3!
+

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

4!
) 

Get a common denominator of 4! on both sides of the equation. 

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4!
+

4 ∗ 3 ∗ 𝑛(𝑛 − 1)

4 ∗ 3 ∗ 2!
 

?
=

 
1

𝑛
(

4 ∗ 3 ∗ 2 ∗ 𝑛(𝑛 − 1)

4 ∗ 3 ∗ 2 ∗ 1!
+

4 ∗ 3 ∗ 𝑛(𝑛 − 1)(𝑛 − 2)

4 ∗ 3 ∗ 2!
+

4 ∗ 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4 ∗ 3!
+

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

4!
) 

Simplify. 



Lauren Santucci     Page 35 

 

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4!
+

12𝑛(𝑛 − 1)

4!
 

?
=

 
1

𝑛
(

24𝑛(𝑛 − 1)

4!
+

12𝑛(𝑛 − 1)(𝑛 − 2)

4!
+

4𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4!
+

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

4!
) 

Combine the numerators. 

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) + 12𝑛(𝑛 − 1)

4!
 

?
=

 
1

𝑛
(

24𝑛(𝑛 − 1) + 12𝑛(𝑛 − 1)(𝑛 − 2) + 4𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) + 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

4!
) 

Multiply both sides by 4!.  

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) + 12𝑛(𝑛 − 1) 
?
=

 
1

𝑛
൫24𝑛(𝑛 − 1) + 12𝑛(𝑛 − 1)(𝑛 − 2) + 4𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) + 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)൯ 

The colors are used to show the expressions that will be distributed. 

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) + 12𝑛(𝑛 − 1) 
?
=

 
1

𝑛
൫24𝑛(𝑛 − 1) + 12𝑛(𝑛 − 1)(𝑛 − 2) + 4𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) + 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)൯ 

Distribute 𝑛 over (𝑛 − 1), 12𝑛 over (𝑛 − 1) twice, 24𝑛 over (𝑛 − 1), 4𝑛 over (𝑛 − 1) and 𝑛 over 

(𝑛 − 1). 

(𝑛2 − 𝑛)(𝑛 − 2)(𝑛 − 3) + 12𝑛2 − 12𝑛 
?
=

 
1

𝑛
൫24𝑛2 − 24𝑛 + (12𝑛2 − 12𝑛)(𝑛 − 2) + (4𝑛2 − 4𝑛)(𝑛 − 2)(𝑛 − 3) + (𝑛2 − 𝑛)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)൯ 

Distribute (𝑛2 − 𝑛) over (𝑛 − 2), (12𝑛2 − 12𝑛) over (𝑛 − 2), (4𝑛2 − 4𝑛) over (𝑛 − 2) and 

(𝑛2 − 𝑛) over (𝑛 − 2). 

(𝑛3 − 3𝑛2 − 2𝑛)(𝑛 − 3) + 12𝑛2 − 12𝑛 
?
=

 
1

𝑛
൫24𝑛2 − 24𝑛 + 12𝑛3 − 36𝑛2 + 24𝑛 + (4𝑛3 − 12𝑛2 + 8𝑛)(𝑛 − 3) + (𝑛3 − 3𝑛2 − 2𝑛)(𝑛 − 3)(𝑛 − 4)൯ 

Distribute (𝑛3 − 2𝑛2 − 2𝑛) over (𝑛 − 3), (4𝑛3 − 12𝑛2 + 8𝑛) over (𝑛 − 3) and  

(𝑛3 − 2𝑛2 − 2𝑛) over (𝑛 − 3). 

𝑛4 − 6𝑛3 + 11𝑛2 − 6𝑛 + 12𝑛2 − 12𝑛 
?
=

 
1

𝑛
൫24𝑛2 − 24𝑛 + 12𝑛3 − 36𝑛2 + 24𝑛 + 4𝑛4 − 24𝑛3 + 44𝑛2 − 24𝑛 + (𝑛4 − 6𝑛3 + 11𝑛2 − 6𝑛)(𝑛 − 4)൯ 

On the right side of the equation, distribute (𝑛4 − 6𝑛3 + 11𝑛2 − 6𝑛) over (𝑛 − 4). 

𝑛4 − 6𝑛3 + 11𝑛2 − 6𝑛 + 12𝑛2 − 12𝑛 
?
=

 
1

𝑛
(24𝑛2 − 24𝑛 + 12𝑛3 − 36𝑛2 + 24𝑛 + 4𝑛4 − 24𝑛3 + 44𝑛2 − 24𝑛 + 𝑛5 − 10𝑛4 + 35𝑛3 − 50𝑛2 + 24𝑛) 
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Combine the colorized like terms. 

𝑛4 − 6𝑛3 + 23𝑛2 − 18𝑛  
?
=

  
1

𝑛
(𝑛5 − 6𝑛4 + 24𝑛3 − 18𝑛2) 

Distribute 
1

𝑛
 to the right side of the equation. 

𝑛4 − 6𝑛3 + 23𝑛2 − 18𝑛 =  𝑛4 − 6𝑛3 + 23𝑛2 − 18𝑛 

As we can see, we have proved that the number of regions created by 𝑛 points and the sum of the 

first five terms of the (𝑛 + 1)st row of Pascal’s Triangle are equal algebraically! 

 

RECOMMENDATIONS FOR FURTHER RESEARCH 

 

Throughout this paper, we have been finding the maximum number of regions, or the greatest 

number of regions, in circles with 1-8 points. We can extend this to the minimum regions in a circle 

by making three of the chords intersect to take away some regions. Let’s try this with circles that 

have four and five points! This attempt is shown in Figure 28. 

 

 

 

 

 

 

Fig. 28. For circles with four and five points, the minimum equals the maximum. 
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Thus, we cannot make three or more chords intersect with these circles. But what about a circle 

with six points? This is shown in Figure 29. 

Fig. 29. There are only 30 regions, compared to 31 regions in the other circle with six points. 

Further research should include this extension, and possibly come up with a formula to compute 

the minimum number of regions for a circle with any number of points. 
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